Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 94(9): 4425-4432, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35501290

RESUMO

The human immunodeficiency virus (HIV) belongs to the Retroviridae family and remains a public health problem in sub-Saharan Africa. Recent reports from WHO have shown that 33 million people died from HIV infections. HIV is one of the most serious fatal human diseases of the 20th and 21st centuries. However, variations in genetic and immunological factors are associated with protection against HIV infection in uninfected people exposed to HIV. This is the case with naturals killers which play an important role in the progression or regression of HIV infection. The objective of this study is to characterize certain HLA (human leukocyte antigen) class II genes and KIR genes in HIV-1 serodiscordant couples in Burkina Faso. This study was carried out at Burkina Faso among nineteen (19) HIV-1 serodiscordant couples. Classical multiplex PCR (SSP-PCR) was used to characterize the presence or absence of the KIR genes and certain class II HLAs (DRB1*11 and DRB1*12). The characterization of the KIR and HLA genes DRB1*11, DRB1*12 in this study demonstrated that the inhibitor KIR2DL5B, would confer protection against HIV-1 infection in seronegative partners (odd ratio [OR] = 0.13 [0.02-0.72] and p = 0.029), and the HLA DRB1*12 allele was associated with protection against HIV-1 infection in seronegative partners (OR = 0.16 [0.03-0.77] and p = 0.038). AA and Bx haplotypes were not found to be associated with HIV-1 infection in serodiscordant couples. This study confirms the involvement of the KIR genes in viral pathologies such as HIV-1 infection. Future larger-scale studies may provide a better understanding of the molecular mechanism by which the KIR haplotype and combination of KIR/HLA are associated with protection against HIV infection.


Assuntos
Infecções por HIV , Cadeias HLA-DRB1 , Receptores KIR2DL5 , Alelos , Burkina Faso , Frequência do Gene , Predisposição Genética para Doença , Infecções por HIV/genética , Infecções por HIV/prevenção & controle , HIV-1 , Antígenos HLA , Cadeias HLA-DRB1/genética , Haplótipos , Humanos , Receptores KIR2DL5/genética
2.
J Pharmacol Toxicol Methods ; 113: 107134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34798285

RESUMO

Erythropoiesis is a complex physiological process by which erythroid progenitors proliferate and differentiate into nonnucleated red blood cells. Several methods can be used to monitor in vitro the differentiation of erythroid precursors, and hence the toxic effects of drugs, chemicals, or pollutants. One of the most commonly available assay of erythropoiesis is the microscopic observation of differentiated cells after benzidine staining, which forms a blue complex with hemoglobin. However, this method is laborious and does not provide accurate results since it heavily relies on the reader's interpretation. Moreover, benzidine is a carcinogen and a highly reactive molecule which forces the reader to microscopically count differentiated and non-differentiated cells within a short time frame (5 min). Here we have developed a simple, inexpensive, in-vitro spectrophotometric assay to measure erythroid differentiation using K562 cell line as a model. Materials needed included 96-well round-bottomed microplates and a microplate reader. Remarkably, carcinogenic benzidine was replaced by its isomeric tetramethyl derivative, the 3,3', 5,5'- tetramethylbenzidine (TMB), which presents several advantages: it is cheap, not mutagenic and a ready-to-use chromogenic substrate. A small volume (50 µl) of TMB added to the samples forms a blue complex in 15 min, and the reaction can be easily stopped and stabilized by the addition of H2SO4. The yellow precipitate is then solubilized, and the absorbance is measured at 450 nm. In addition, the suitability of the assay to determine the effects of compounds on erythroid differentiation was further tested with known inhibitors (artemisinin derivatives) of K562 differentiation. Overall, the reported methodology permits to measure in an accurate and reproducible manner the K562 differentiation and can be used for medium throughput screenings (MTS) of compounds or environmental toxics with potential erythro-toxicity and ability to inhibit erythroid differentiation.


Assuntos
Eritropoese , Diferenciação Celular , Humanos , Células K562
3.
Microorganisms ; 8(1)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936284

RESUMO

In recent decades, drugs used to treat malaria infection have been shown to be beneficial for many other diseases, including viral infections. In particular, they have received special attention due to the lack of effective antiviral drugs against new emerging viruses (i.e., HIV, dengue virus, chikungunya virus, Ebola virus, etc.) or against classic infections due to drug-resistant viral strains (i.e., human cytomegalovirus). Here, we reviewed the in vitro/in vivo and clinical studies conducted to evaluate the antiviral activities of four classes of antimalarial drugs: Artemisinin derivatives, aryl-aminoalcohols, aminoquinolines, and antimicrobial drugs.

4.
J Comput Aided Mol Des ; 32(3): 473-486, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29383466

RESUMO

The proteins involved in the autophagy (Atg) pathway have recently been considered promising targets for the development of new antimalarial drugs. In particular, inhibitors of the protein-protein interaction (PPI) between Atg3 and Atg8 of Plasmodium falciparum retarded the blood- and liver-stages of parasite growth. In this paper, we used computational techniques to design a new class of peptidomimetics mimicking the Atg3 interaction motif, which were then synthesized by click-chemistry. Surface plasmon resonance has been employed to measure the ability of these compounds to inhibit the Atg3-Atg8 reciprocal protein-protein interaction. Moreover, P. falciparum growth inhibition in red blood cell cultures was evaluated as well as the cyto-toxicity of the compounds.


Assuntos
Antimaláricos/química , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Peptidomiméticos/síntese química , Proteínas de Protozoários/antagonistas & inibidores , Triazóis/síntese química , Antimaláricos/farmacologia , Autofagia , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptidomiméticos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica , Relação Estrutura-Atividade , Triazóis/farmacologia
5.
Antimicrob Agents Chemother ; 59(9): 5135-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26055362

RESUMO

The drug target profile proposed by the Medicines for Malaria Venture for a malaria elimination/eradication policy focuses on molecules active on both asexual and sexual stages of Plasmodium, thus with both curative and transmission-blocking activities. The aim of the present work was to investigate whether the class of monovalent ionophores, which includes drugs used in veterinary medicine and that were recently proposed as human anticancer agents, meets these requirements. The activity of salinomycin, monensin, and nigericin on Plasmodium falciparum asexual and sexual erythrocytic stages and on the development of the Plasmodium berghei and P. falciparum mosquito stages is reported here. Gametocytogenesis of the P. falciparum strain 3D7 was induced in vitro, and gametocytes at stage II and III or stage IV and V of development were treated for different lengths of time with the ionophores and their viability measured with the parasite lactate dehydrogenase (pLDH) assay. The monovalent ionophores efficiently killed both asexual parasites and gametocytes with a nanomolar 50% inhibitory concentration (IC50). Salinomycin showed a fast speed of kill compared to that of standard drugs, and the potency was higher on stage IV and V than on stage II and III gametocytes. The ionophores inhibited ookinete development and subsequent oocyst formation in the mosquito midgut, confirming their transmission-blocking activity. Potential toxicity due to hemolysis was excluded, since only infected and not normal erythrocytes were damaged by ionophores. Our data strongly support the downstream exploration of monovalent ionophores for repositioning as new antimalarial and transmission-blocking leads.


Assuntos
Antimaláricos/farmacologia , Ionóforos/farmacologia , Piranos/farmacologia , Antimaláricos/efeitos adversos , Linhagem Celular , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Hemólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Ionóforos/efeitos adversos , Estrutura Molecular , Monensin/efeitos adversos , Monensin/farmacologia , Nigericina/efeitos adversos , Nigericina/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/patogenicidade , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Piranos/efeitos adversos
6.
J Ethnopharmacol ; 148(3): 763-9, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23680158

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Canthium henriquesianum (K. Schum) is traditionally used in Burkina Faso for the treatment of malaria, but has not been properly investigated, yet. The aim of this study was to characterize in vitro the antiplasmodial and the anti-inflammatory activity of extracts from Canthium henriquesianum (K. Schum). In parallel, extracts of Gardenia sokotensis (Hutch) and Vernonia colorata (Willd), also traditionally used together in Burkina Faso and already reported with antimalarial activity, were compared. MATERIALS AND METHODS: Plant extracts were tested in vitro for antimalarial activity against chloroquine susceptible (D10) and resistant (W2) strains of Plasmodium falciparum using the lactate dehydrogenase assay. Cell cytotoxicity was assessed on human dermal fibroblast (HDF) by the MTT assay. The selectivity index (SI) was used as the ratio of the activity against the parasites compared to the toxicity of the plant extract against HDF. In vitro cytokine production was assessed by ELISA technique. RESULTS: Canthium henriquesianum aqueous extract had a moderate antimalarial activity (IC50<50 µg/ml) with a good selectivity index (SI=HDF/D10>7). Canthium henriquesianum diisopropyl ether extract was the most potent inhibitor of parasite growth with an IC50 9.5 µg/ml on W2 and 8.8 µg/ml on D10 and limited toxicity (SI>2). Gardenia sokotensis and Vernonia colorata aqueous extracts were shown to be significantly less active (IC50≥50 µg/ml) with substantial toxicity. In addition, when the production of IL-1ß and TNFα by lipopolysaccharide (LPS) or hemozoin (malaria pigment) stimulated human THP-1 monocytes was assayed, it was found that the extract of Canthium henriquesianum induced a dose-dependent inhibition of IL-1ß, but not of TNFα production, thus confirming its traditional use as antipyretic. By NMR analysis, the chromone was identified as the mostly represented compound in the diisopropyl ether extract of Canthium henriquesianum. Chromone however, was less active as antimalarial than the crude extract and it did not inhibit cytokine production at not toxic doses, indicating that other molecules in the total extracts contribute to the antiplasmodial and anti-inflammatory activity. CONCLUSION: Canthium henriquesianum seems to possess antimalarial activity in vitro and the ability to inhibit the production of the pyrogenic cytokine IL-1ß.


Assuntos
Anti-Inflamatórios/farmacologia , Antimaláricos/farmacologia , Extratos Vegetais/farmacologia , Rubiaceae , Burkina Faso , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Interleucina-1beta/metabolismo , Medicinas Tradicionais Africanas , Folhas de Planta , Caules de Planta , Plasmodium falciparum/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Vernonia
7.
Pak J Biol Sci ; 14(3): 149-69, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21870639

RESUMO

Rubiaceae family is a large family of 630 genera and about 13000 species found worldwide, especially in tropical and warm regions. These plants are not only ornamental but they are also used in African folk medicine to treat several diseases. Based on online published data and library bibliographic research, we herein reported accumulated information related to their traditional usages in sub-Saharan traditional medicine, their chemical composition and the screened pharmacological activities. Indeed, more than 60 species are used for more than 70 medicinal indications including malaria, hepatitis, eczema, oedema, cough, hypertension, diabetes and sexual weakness. Through biological screening following leads supplied with traditional healers, many of these plants exhibited antimalarial, antimicrobial, antihypertension, antidiabetic, antioxidant and anti-inflammatory activities. Bioactive compounds including indole alkaloids, terpenoids and anthraquinones have been isolated from these bioguided fractionation studies. It is evidence that great attention has been paid to species such as Nauclea latifolia, Morinda lucida, Mitragyna inermis and Crossopteryx febrifuga; however, several compounds should be waiting to be discovered since none of these plants has been systematically investigated for its biochemical composition. According the current global health context with the recrudescence of HIV, much effort should be oriented towards this virus when screening Rubiaceae.


Assuntos
Plantas Medicinais/química , Rubiaceae/química , África Subsaariana , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Medicinas Tradicionais Africanas , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Plantas Tóxicas/química
8.
Asian Pac J Trop Med ; 4(2): 129-32, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21771436

RESUMO

OBJECTIVE: To investigate the antimalarial effect of a few plants in Togo folk medicine. METHODS: After ethnobotanical survey, Opilia celtidifolia, Pavetta corymbosa (P. corymbosa) and Tamarindus indica (T. indica) were selected for screening. In vitro antimalarial tests were performed on crude extracts against fresh clinical isolates of Plasmodium falciparum using the semi microtest. RESULTS: Different IC(50) values of the extracts ranged from 2.042 to 100.000 µg/mL. According to the results, the methanol extract of aerial part of P. corymbosa followed by aqueous extract of fruit of T. indica were the most active (IC(50) of 2.042 and 4.786 µg/mL, respectively). Qualitative test revealed the presence of alkaloids in the leaves of P. corymbosa that may be responsible for the activity of the plant. CONCLUSIONS: Our study provides scientific evidence for usage of plant in the folk medicine, and further studies are needed for identification and purification of the active principles.


Assuntos
Antimaláricos/farmacologia , Misturas Complexas/farmacologia , Gleiquênias/química , Extratos Vegetais/química , Plantas Medicinais/química , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/isolamento & purificação , Misturas Complexas/isolamento & purificação , Humanos , Concentração Inibidora 50 , Malária Falciparum/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/isolamento & purificação , Togo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...